

ANNULAR AIR SOLAR RECEIVER

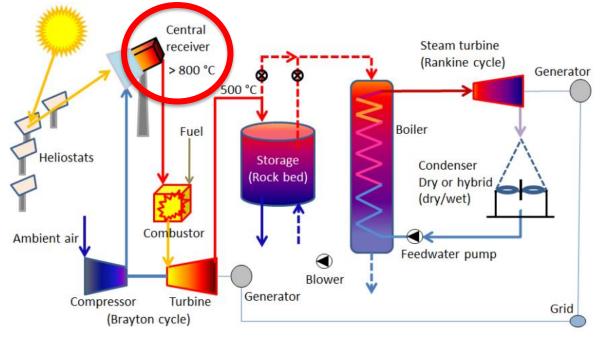
Carel van der Merwe¹ and Dr JE Hoffmann²

^aBEng (Mechanical) Candidate, Dept. Mechanical and Mechatronic Engineering, University of Stellenbosch ^bSenior Lecturer – Dept. Mechanical and Mechatronic Engineering, University of Stellenbosch

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

The problem

Load Shedding



3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

SUNSPOT

Concept in development

<u>Central Receiver</u>

- Air as working fluid
- Storage

Scheme of the The Stellenbosch UNiversity Solar Power Thermodynamic Cycle. Source: STERG-blog

3rd Annual STERC SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

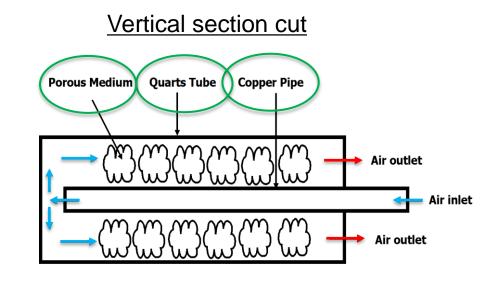
Why air?

- Solar Towers Sub-Sahara regions
- Don't have lot of water
- Air doesn't solidify like salt
- Freely available
- Heat up the rocks

Why not air?

- Bad heat transfer characteristics
- Higher heat fluxes needed
- Higher material temperatures needed
 than air itself
- High temperatures high losses

- Linear mirror system
- Manual Tracking
- Rotates around y-axis
- Swivel around x-axis
- Low temperature & pressure safety



3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

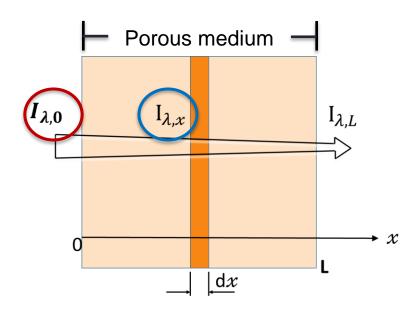
The Concept

The receiver itself

- Air enters through copper pipe and makes 180° change
- Return through porous
 medium
- Porous medium high heat transfer coefficient
- Absorb the radiation
- Increase surface area for heat transfer to the air
- Copper pipe carry weight

The Concept

Where it fits in



 $\langle \circ \rangle$

Aims of Project

Absorption coefficient

• To determine the absorption coefficient

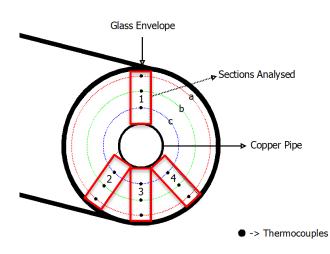
•
$$I_{\lambda}(x) = I_{\lambda,0} e^{(kx)}$$

- Will be variable in Matlab model
- To get the specific solar irradiance

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

The Real Deal

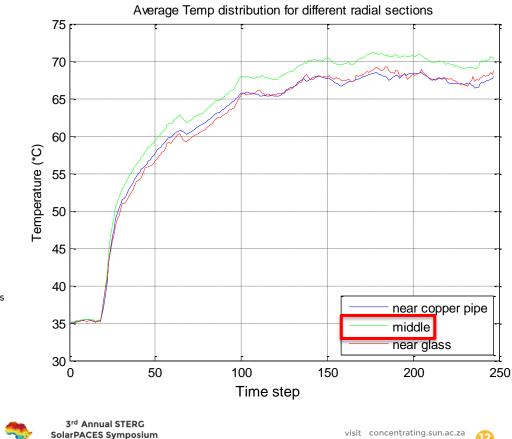
Sunroof Eng. Building



sterg@sun.ac.za

contact

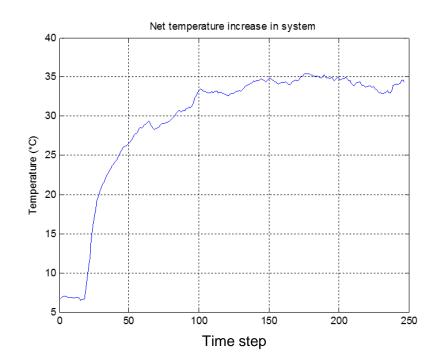
Measured data


ENBOSCH

UNIVERSITY

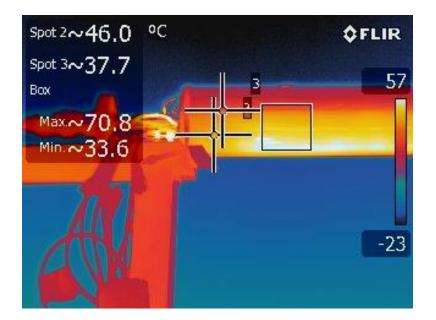
14 & 15 July 2015

Stellenbosch, South Africa


concentrating.sun.ac.za

Measured Data

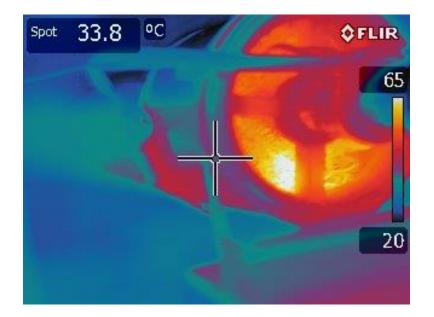
- Variation due to:
- DNI variation
- Human errors



3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

Thermal imaging - glass tube

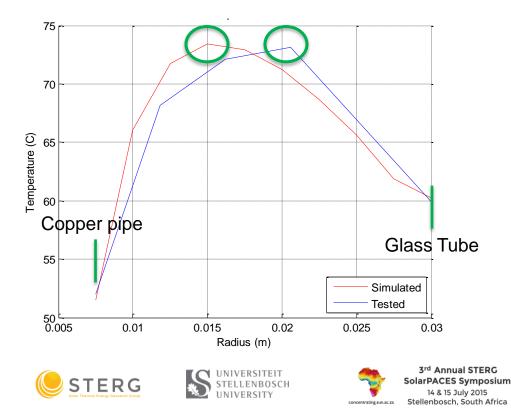
- Using infrared
- Measure the surface temperature
- To determine the losses in the system



3rd Annual STERC SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

Thermal image - outlet

- Temperature of porous medium
- Higher than air temperature of 58°C



Matlab

- Using a conduction model
- For absorptions coefficient of 3,95
- Experimental test reaches a maximum closer to glass
- Additional modelling by CFD

Conclusion

And where we going

- Results is very promising- expected lower net temperature increase
- I believe there is place in the market for air receivers
- The structural and thermal analyses must be studied at high temperatures
- CFD model to verify results (myself)
- Separate study to test other materials

Thank you

ACKNOWLEDGEMENTS:

STERG team Study Leader – Dr JE Hoffmann NRF

CONTACT DETAILS:

Carel van der Merwe Solar Thermal Energy Research Group (STERG) Stellenbosch University South Africa

visit us: concentrating.sun.ac.za